Skip to main content

Sustainable Development and Technologies National Programme of the Hungarian Academy of Sciences

SUSTAINABLE TECHNOLOGIES SUBPROGRAM

Habitat management for ecological sustainability: experimental studies in terrestrial ecosystems

Of the 17 Sustainable Development Goals (SDGs) adopted by the UN, SDG 15 is ” Life on land “, which explicitly calls for the conservation, restoration and sustainable use of ecosystems and ecosystem services. The work of the Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES) synthesising existing knowledge is complementary to this. The focus areas of our planned research are within SDB 15, namely the sustainable management and restoration of different forest, grassland and arable ecosystems and the assessment of the impact of drought on grasslands. Our research is carried out in extensive national and international collaborations with BSc, MSc and PhD students from several universities (ELTE, MATE, SzTE, ÁOT), also including foreign students.

The project focuses on an experimental approach to test and demonstrate issues that contribute to the sustainability goals. Our research has already shown the importance of traditional, extensive grassland management for biodiversity and landscape conservation, and the diversity of Hungarian grasslands, which is outstanding in Europe. In addition to their economic use, forests have important conservation and recreational functions and ecosystem services, and therefore there is a growing emphasis on forest management practices that can provide timber and fire wood while maintaining the ecological functions and biodiversity of forests. Understanding the effects of climate change, especially drought in Hungary, and managing the problem is a fundamental task, which we targeted through field experimental research. ÖK ÖBI maintains three complex field experimental systems to understand the effects of grassland restoration, forest management and drought. (https://ecosystem-services.ecolres.hu/research/field-experiments, https://www.kiskun.lter.hu/en/node/837, https://piliskiserlet.ecolres.hu/).

Our aim is (1) to carry out the ecological research necessary for sustainable agriculture and to integrate the results into farming and policy. The starting point for our research is the so-called ecological intensification, which means that the processes necessary for farming, such as pest control or pollination, are not to be assisted by artificial means (e.g. agrochemicals), but by supporting natural processes and ecosystem services. In this way, natural enemies control pest infestations and wild bees ensure efficient pollination. We will monitor the populations of native pollinators and other arthropods, partly in our own experimental systems but also on a larger scale, and identify drivers of change in these populations through experiments and observations.

Our other main objective (2) is to promote the establishment of pollinators, butterflies, bees, etc. in the urban environment. We hypothesise that insect-friendly management of public spaces will increase pollinator insect populations. We have already established partnerships with several municipalities that want to help pollinators by different methods (less frequent mowing, sowing of diverse flower seed mixtures, installation of bee hotels). These urban studies offer a good opportunity for thesis work by university students.

Our third research objective (3) is to investigate the impact of weather extremes on grasslands, with a particular focus on the drought of 2022. Extreme weather events have occurred in the past, but will increase in frequency and intensity with climate change. In addition, many ecosystems are under threat from many other factors (overuse, pollution, biological invasions, climate change) and our previous studies have shown that these effects can be mutually reinforcing. Understanding the impact of increasingly severe extreme weather events on already stressed ecosystems is therefore crucial. Related to this is the question of how extreme conditions, such as heat waves, affect pollinator behaviour, potentially threatening populations and the food security provided by their ecosystem services.

In our fourth theme, we will continue sampling microclimate, soil conditions, the organism groups studied, and regeneration in the Pilis Business Mode Experiment (4a). We hypothesise that microclimatic differences across treatments will decrease as regeneration progresses. In the Pilis Lék experiment (4b), we expect a smaller increase in soil moisture in elongated gaps than in circular gaps, resulting in reduced understory growth and thus creating more favourable conditions for oak regeneration. Moreover, an increase in blackberry cover in the large circular plots may negatively affect both regeneration and understory composition.

Investigation of the amount of nitrogen loss from fertilizers. Estimation of environmental nitrogen load from plant cultures, using physical measurement methods.

INSTRUMENT AND METHOD DEVELOPMENT

The project aims to develop photoacoustic (PA) measuring systems which, in addition to NH3, is also suitable for the simultaneous measurement of the flux of a greenhouse gas and stratospheric ozone depleting N2O, emitted from soils, or from plants. Field investigations will be completed with laboratory, climate chamber experiments. Model development is also planned to simulate the NH3 and N2O fluxes between the soil – plant and the atmosphere.
Further planned tasks: testing, calibration, and determination of the analytical parameters of an open-chamber, photoacoustic measuring system suitable for measuring the concentration of aerosol particles. Performing flow acoustic and photoacoustic excitation numerical modelling with increased flow velocity. Developing a plan for installing the measuring system on a drone, for field use. Integrating and testing the laser light source and the open chamber.
Development of a measurement setup suitable for controlled laboratory modelling of laser-excited biomass and elemental carbon (soot) particles. Mapping of gas-phase cross-effects.

CROPLAND INVESTIGATIONS

One of our goals is the continuous high-frequency photoacoustic measurement of the NH3 and N2O flux above arable lands using the eddy covariance method. In addition, we are planning additional soil, plant, and meteorological measurements, with continuous measurement of soil NH3 and N2O emissions at several plots. Parallel measurement of the total gas emission of the soil – canopy system and the emission of the soil, in order to separate the NH3 and N2O fluxes of the soil and plant. Modelling of the NH3 and N2O fluxes between the soil – plant and the atmosphere. Development, testing and application of models.

CLIMATE CHAMBER INVESTIGATIONS

Conducting experiments in climate chambers. Measuring the concentration of NH3 and N2O in the chambers using the PA method, separately for plants and soils, to determine the extent of gas exchange between soil-air and plant-air. Testing the effect of plant drought stress and nitrogen supply on the level of gas emissions. Estimating the effect of climate change on gas emissions. It is an important question how abiotic plant stress (e.g. heat stress, drought stress) – that is currently and expected to occur more frequently in the future – affects emissions. Therefore, we perform chlorophyll fluorescence tests under stress and control conditions.

Developing high-precision, ppb-level PA measurement of the 14N/15N isotope ratio. We can follow the processes occurring in the soil – plant – atmosphere system by measuring the stable isotope ratio, taken advantage of every physical and chemical transformation involves a specific change in the isotope abundance. Since the natural ratio of 15N is only 0.36%, enrichment is necessary, in the form of 15NH4Cl added to the substrate. Further testing options and goals include the use of 15N labelling techniques with 15NH4+ and 15NO3– isotope enrichment. By using either or both of these methods in combination with the measurement of isotopic ratios of released gases, we can obtain important information on the mechanisms of processes occurring in the soil that are not fully understood yet.

INVESTIGATION OF COMBUSTION-DERIVED AEROSOL PARTICLES.
Generation and photoacoustic examination of biomass-derived and elemental carbon particles under controlled laboratory conditions. Determination of wavelength and laser parameters for PA system development. Design and development of resonator and PA detector unit. Design and development of an open-chamber system that can be installed on a drone. Investigation of the spectral response and energy characteristics of biomass-derived particles using a drone-mounted system. Atmospheric emission measurements. Laboratory measurement of the spectral response of tarball particles. Investigation of savanna fire emissions in the frame of international cooperation. Investigation of the spectral response of biomass-derived particles using a drone-mounted system. Development and finalization of measurement models. Verification of the applicability of spectral response for identifying the source of emitting biomass. Estimation of climatic effects. Verification of the applicability of drone-mounted PA systems in the immediate vicinity of emissions and in remote emission environments. Exploration of the composition and emission source characteristics inherent in the spectral response.

Human and ecological sustainability of environments exposed to significant anthropogenic effects

In cities, aerosol particles resulting from resuspension of deposited road dust by moving vehicles and wind, and direct emissions from mechanical abrasion of vehicles, can contribute up to 30–50% of urban PM10. An on-line sampling method was developed to collect the respirable fraction of deposited road dust, allowing the application of previously unused analytical methods. Estimation of the contribution of the resuspended fraction to atmospheric PM10 has only been possible by modelling. In this research we will determine the contribution of this aerosol source type based on the chemical composition of the resuspended and atmospheric PM10. We will estimate the residence time of resuspended road dust using natural radionuclides in the atmosphere as tracers. In addition, toxicological tests will be carried out to determine the genetic and cell biological changes and DNA damage caused by resuspended road dust in humans. In addition to the scientific results, the identification of resuspended road dust in urban atmospheric PM10 and the determination of its contribution, residence time and effects on human health will have social and economic benefits, as it can help to develop effective measures by municipalities and authorities to protect urban air quality. The reduction of urban PM10 pollution can contribute to the reduction of respiratory and cardiovascular diseases.

In recent decades, the reproductive success of animals living in urban habitats has changed dramatically due to changes in food supply and the lack of natural food sources. Intense human disturbance could have a negative impact on the reproduction of urban populations; however, several animal species are rapidly adapting to the constant human presence and activities. This adaptation often becomes a source of conflict, and in order to find sustainable strategies for coexistence with urban animal populations, it is therefore necessary to explore the mechanisms that lead to the development of tolerance/bolder behaviour towards humans. In this new project, our main aim is to identify potential relationships between relevant local environmental conditions and the reproductive success, survival and behaviour of urban animals. Using a combined approach of fieldwork and radio-telemetry tracking, we are characterising the mortality and habitat use of fledgling birds and identifying the most favourable urban habitat types for this sensitive life stage. Our aim is to investigate the effects of anthropogenic food sources on the reproductive success, offspring development and health of urban birds. We will experimentally test whether rapid adaptation to human disturbance and increased risk-taking behaviour involves epigenetic mechanisms. Finally, we will investigate the effects of human disturbance at the community level, i.e. which species are sensitive to persistent disturbance and which are not. We hope that our studies will contribute to a better understanding of the effects of urbanisation on communities, the challenges faced by urban wildlife and the responses to these challenges. All of this is essential if we are to more effectively and sustainably conserve the original ecosystem in our built environment.

Our altered environment, caused by the extreme effects of climate change and scarcity of raw materials, is challenging in the short term. Preparing to anticipate and mitigate the social and economic impacts of unavoidable changes is essential. The key pillar is awareness raising, which is a prerequisite for the feasibility of mitigation and adaptation goals. In this research we will develop a methodology for measuring and assessing adaptation readiness, implement training topics related to adaptation readiness, implement online training formats in Hungarian and English, and finally train professionals with appropriate knowledge. A scientifically based and sophisticated information database will be created in Hungarian. The aim of this platform is to disseminate comprehensible visual, audio and written information on adaptation that will help prepare organisations, communities and individuals for the accelerating changes caused by the combined effects of the complex impacts of resource depletion and climate change, among other factors. The Credible Adaptation Platform, which presents the processes and interrelationships, and also makes it possible to understand the most important international research, enables the dissemination of credible and understandable visual, audio and written information related to adaptation. It facilitates discussion between stakeholders and helps them stay informed about changes by quickly processing and delivering up-to-date scientific information.

Sustainable cities: ecological and human aspects of urban biodiversity

Introduction and problem statement

Today, more than half of the world’s population lives in cities, and this proportion is steadily increasing. Understanding how urban ecosystems function is essential to maintaining and improving urban quality of life and well-being. For city dwellers, these ecosystems are their daily, direct link with the living world and nature. The remaining urban natural habitats, waterfront corridors, small ponds, abandoned areas, managed parks, private gardens, balconies, and roof gardens are essential elements of the urban ecosystem. There is significant biodiversity associated with these habitats. In field studies and meta-analyses, the researchers of this project have found that species numbers of many groups of organisms decline significantly with urbanisation, particularly in the city centres, and that the urbanisation gradient significantly impacts animal behaviour. Urban habitats provide essential ecosystem services such as soil, water and air quality protection and climate regulation. High human population densities raise several water quality and water management issues related to increased water use (e.g. micropollutants, sewer smell).

Cities are home to complex community dynamics between humans and a wide range of living organisms, and urban reservoir hosts, vectors and pathogens pose an increased epidemiological threat to the human population living in cities. The high population density and the central commercial and transport role of cities facilitate the introduction of pathogens and vectors from remote areas and the rapid emergence of human-to-human infections. The heat island effect, especially combined with climate change, helps pathogens, their vectors and reservoir hosts to survive the winter months more easily.

In maintaining green and blue infrastructure and associated biodiversity in cities, the functional connections between habitats are crucial. In cities with well-connected green and blue infrastructure, the impact of urbanisation can be significantly reduced. A key question for this research is how methods developed for the restoration of natural habitats can be adapted to urban environments.

The aim of the research programme

The programme will examine the functioning of urban ecosystems, their human aspects and the interventions needed to maintain and restore their functioning within a coherent framework of three interrelated themes.

1. Exploring the biodiversity of urban habitats and understanding the functioning of urban ecosystems.
Our multi-taxon studies aim to explore the mechanisms that influence the biodiversity and ecosystem services of urban terrestrial and aquatic habitats.

Key research topics:
1.1 Multi-taxon analysis of biodiversity along an urban – suburban – rural gradient.
1.2 Pollinators in cities, biodiversity of flower strips and flower beds, factors influencing the composition and functioning of urban pollinator communities.
1.3 Mapping the biodiversity potential of urban ponds at national level and exploring the factors influencing the plant, animal and microbial communities in ponds.
1.4 Understanding the ecological strategies, conditions, and consequences of adaptation to urban lifestyles, through comparative analysis of the characteristics and behaviour of urban and rural populations.

2. Exploring the links between urban ecosystems and city residents and the human aspects of urban ecosystems.
Cities are home to complex community dynamics between humans and a wide range of living organisms, and human activity fundamentally impacts urban ecosystems. Our research aims to explore the diverse relationships and interactions between humans and urban ecosystems.

Key research topics:
2.1 Urban water supply, water quality, composition, functioning and metabolism in aquatic ecosystems.
2.2 Epidemiology of urban green spaces in relation to the risk of infection by mosquito- and tick-borne pathogens.
2.3 Investigating the human and animal health aspects of urban habitats by analysing national-level datasets collected in citizen science programmes.
2.4 Human-wildlife conflict in the built environment: road ecology studies.
2.5 Improving the quality of food crops for cultivation through the supplementation of deficiency elements.

3. Management and restoration of urban habitats, solutions to maintain and enhance biodiversity and functions of urban ecosystems.
Increasing the size and biodiversity of urban green spaces is a key objective of the EU Biodiversity Strategy. Our research examines how habitat restoration methods and nature-based solutions developed in natural areas can be applied in urban environments.

Key research topics:
3.1 Perspectives for urban green and blue infrastructure development; providing science-based guidance through developing evidence-based management plans.
3.2 Assessing the restoration potential of urban green infrastructure; cost-effectiveness analysis of restoration methods.
3.3 Explore the multi-taxon biodiversity associated with gardens and use the results to produce a science-based practical guide to designing nature-friendly gardens.

The research programme is closely linked to the UN Sustainable Development Goals ‘Good Health and Well-being’, ‘Clean Water and Sanitation’, ‘Sustainable Cities and Communities’, ‘Life on Land’. The results of our research can be integrated into urban green and blue infrastructure planning and urban design strategies.

Effect of Invasive Species and Human Land-Use on The Ecosystem of Lake Balaton and Its Catchment Area

The spreading of invasive species causes serious problems in native ecosystems worldwide, and unfortunately also in Lake Balaton and its catchment area. In the last 100-150 years, several non-native species have been introduced and immigrated spontaneously into the area Lake Balaton, some of which have established abundant populations and significantly affect the functioning of the ecosystem and the living conditions of native species. The intense human presence and land-use – e.g., residential and recreational areas, agriculture and fish farming – also has a serious impact on the ecosystem of the lake and its surroundings. Further consequence of human activities includes releasing of polluting substances into the environment, which can enter and impact natural areas as well.

The value of Lake Balaton and its surrounding landscape for us is basically based on the “ecosystem services” provided by the natural environment, for example, the beauty of the landscape, the possibility of bathing and sailing in a clean lake water, the excitement of fishing, a clean water base, the natural removal of pollutants and shaping of the microclimate. The availability of all these attractive values depends on the status of the ecosystem.

In this project, we therefore aim to investigate the distribution and ecological effects of invasive aquatic organisms in Lake Balaton and its catchment area, as well as the drivers and possible counter actions of invasions. We also examine how the different land-use activities influence biodiversity, ecosystem functioning and stability, and “ecosystem services” provided by Lake Balaton.

 

Specific objectives of the project

  • Exploration of the causes of occasional algal blooms and drivers of the primary production: assessment of the composition of the phytoplankton and phytobenthos in Lake Balaton using microscopic and molecular biological methods; examination of factors affecting the nutrient turnover of planktonic and benthic primary production; exploration of factors promoting the mass production of algae; analysis of physical and chemical characteristics of the sediment; examination of organic carbon content and “respiration” of the sediment; assessment of phosphorus turnover of the sediment; evaluation of the role of sediment-dwelling algae on the nutrient turnover. The role of allochthonous organic matter in the nutrient cycle of Lake Balaton: investigation of the bioavailability of organic carbon and the role of the UV radiation using mesocosm experiments.
  • Distribution and competitive advantage of invasive mussel species: assessment of the abundance and biomass of Dreissena species and analysis of their long-term patterns in Lake Balaton; examination of intraspecific and interspecific competition of Dreissena species under different environmental conditions in field and laboratory experiments; laboratory testing of the performance of Dreissena species under different sediment types and extreme environmental conditions (hypoxia, high temperature); assessment of post-mortem nutrient release of Dreissena species.
  • The effect of land-use on the composition, diversity and functioning of macroscopic invertebrate communities: comparison of the functional structure of macroscopic invertebrate assemblages between natural reed, and artificial riprap and harbour habitats in Lake Balaton; taxonomical and functional analysis of invertebrate assemblages of natural, urban and fishpond effected stream sections in the catchment area; analysis of the relationship between human impact (land-use) and functional diversity.
  • The impact of land-use and invasive fish species on the organization and functioning of fish communities: investigation of the assemblage structure of fish communities, habitat use of alien and native fish species in Lake Balaton, Kis-Balaton and streams in the catchment area; examination of the trophic organization of the fish community of Lake Balaton using stable isotopes; investigation of the feeding ecology of the invasive black bullhead by laboratory experiments; population genetic analysis of invasive littoral fish species (pumpkinseed sunfish, monkey goby) in Lake Balaton.
  • Effect of the urban areas on the distribution, morphology and health status of the dice snake.
  • Habitat use, food and health status of the otter in the catchment area of Lake Balaton: mapping the current occurrence, analysis of the long-term distribution pattern and the effect of human land-use, habitat classification; food analysis from faeces, using DNA and stable isotope-based techniques – investigation of the role of non-native/invasive species in the diet; post mortem ecotoxicological and health studies.
  • Spatial and temporal assessment of anthropogenic chemical pollutants (e.g. drug residues, UV filtering compounds) in Lake Balaton and its catchment area.
  • Investigation of the effect of anthropogenic chemical factors occurring in the drainage area of Lake Balaton on aquatic invertebrate test organisms: identification of individual, cellular and molecular level effects on aquatic organisms; examination of the accumulation of active substances; identification of new marker molecules that indicate stress effects in invertebrates; modelling the ecological effects of UV filter compounds from sunscreens on aquatic organisms in mesocosm experimental systems.
  • Long-term analysis of the ecosystem services and their anthropogenic and environmental drivers in Lake Balaton.

The effects of different forestry treatments on decomposer soil communities and soil health

Preserving and increasing the naturalness of forests is primarily possible through sustainable forest management. Besides sustainable economics, to preserve the protective, ecological, and touristic functions of forests, different forestry management technologies are needed. Important claims of these technologies are to secure the increasing biodiversity, fertility, renewable capacity, and vitality of forests.

Experts of the Centre for Ecological Research and Pilis Parkerdő Ltd. in 2014 established five different treatments (preparation cutting, clear-cutting, retention tree group, and gap-cutting) in the 70-year-old oak forest stock of the Hosszú-hegy (Hungary) (Pilis Forestry Treatment). Besides that, the Pilis GAP Experiment investigates the effects of forest gaps with different shapes and sizes. In our research we investigate the effects of different forestry managements on forest soil and the diversity of decomposer communities. This research is being carried out in collaboration with two HUN-REN research centres (ÖK and TAKI).

In this project, we aim to investigate the effects of different forest management types on the communities of soil-living mesofauna and the microbiota of the rhizosphere (bacteria, symbiont fungi), especially on their genetic and functional diversity and through that on soil health. We hypothesize, that biodiversity and soil health are inversely related to the degree of disturbance.

The research contributes to the practical implementation of ecologically sustainable forest management and integrated nature conservation in line with global challenges. In the light of our results, the least environmentally damaging method of forest management can be selected in the future.